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Abstract

Perhaps, this is the ®rst paper that derives analytic solutions for the fundamental eigenfrequencies in all six directions

of motion in optical actuators. The speci®c analysis is conducted for actuators suspended by four cantilevered beams

having rectangular bends near the beam ends. While some existing reports consider only one or two translational

motions, the present paper considers all six motions including rotational motions. The well-known Castigliano theorem

is employed for the prediction of sti�ness in the six directions of motion. The use of simple, approximate deformed

shapes for all directions is newly proposed in this work. The correct deformed shapes play a crucial role in the analysis.

The validity of the present results is veri®ed by comparison with ®nite element results. As a practical application of the

present approach, an optimal suspension beam sizing problem is considered. Ó 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

In many optical actuators, the optimal structural design of actuators satisfying design speci®cations is
very important. This is because the performance of the whole optical system such as access speed and
stability greatly depends on the structural dynamics of the actuator. Similarly, the importance of the
structural characteristics is also addressed in some sensors. For instance, a multi-axis acceleration vector
sensor must have good dynamic characteristics in terms of resonant frequencies, bandwidth, etc. (G�opel
et al., 1994).

Among the various sensors and actuators, the present work is mainly concerned with the analytic de-
termination of the fundamental eigenfrequencies of an optical pickup in six directions of motion. Optical
pickup systems become more important devices for large capacity storage (Zheng, 1994). The analytic
solutions for the fundamental eigenfrequencies using a simpli®ed model of an actuator can play an
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important role in an early design step. Since early design optimization requires a considerable amount of
calculations, the present simpli®ed analysis allows easy design changes and gives an insight into the given
design problems in comparison with ®nite element analysis.

Fig. 1 shows an optical pickup system used to retrieve the information recorded on an optical disk (see
Bouwhuis et al. (1985) for the principle of optical disk systems). It mainly consists of an objective lens, a coil
and a bobbin. The bobbin holding the objective lens is supported by four suspension beams.

In order to read correctly the information recorded on a disk using a laser beam, correct tracking and
focusing of the laser beam is most important. Unfortunately, tracking and focusing motions cannot be
completely free from unwanted motions such as the tilting motion. Therefore, designing an optical pickup
system requires the understanding of the system dynamic characteristics of actuators not only for the
tracking and focusing motions, but also for other motions including rotational motions. Subsequently, the
fundamental eigenfrequencies and mode shapes in three translational and three rotational motions of a
bobbin must be known. The present work is devoted to such analysis and derives analytic solutions for all
of the six directions of motion for the ®rst time.

The papers on the analysis of actuator dynamic characteristics are very limited. Kajiwara and
Nagamatsu (1993) have introduced a structural design technique in order to handle problems related to
resonance. In a recent study, Kim et al. (1999) have shown the usefulness of the rectangular bends in the
suspension beams of an actuator and proposed a rigid-body structural model of the actuator. Lee et al.
(1997) used a simpler model for the dynamic analysis of an actuator. However, these works are limited to
the analytic determination of fundamental eigenfrequencies only in tracking and focusing the directions.

Considering the importance of fundamental eigenfrequencies in all directions of motion for the struc-
tural design of actuators, the analytic determination of all the six fundamental eigenfrequencies is extremely
useful. This will facilitate the initial structural design of an actuator. The goal of this work is to present an
analytic approach to calculate the fundamental eigenfrequencies of an actuator in all directions of motion.
Although the bobbin tilting modes having high eigenfrequencies must be suppressed, the fundamental
modes having low eigenfrequencies that are governed mainly by the suspension sti�ness must be under-
stood in order to select the optimal and cost-e�ective controllers.

To derive all the six fundamental eigenfrequencies, the actuator suspended by four cantilevered beams is
modeled as a one-degree-of-freedom spring±mass system in each of the six directions of motion. Casti-
gliano's theorem is adopted in order to derive the sti�ness in each direction of motion. However, the crucial
step in the present analysis is the correct prediction of deformed shapes of the suspension system, partic-

Fig. 1. Schematic ®gure of an optical actuator system.
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ularly for the rotational motion. Furthermore, the imposition of approximate mode-orthogonality con-
ditions is the most important procedure in the analysis of rotational modes; without the approximate
conditions, the analysis would be impractically complicated. These issues are addressed in detail in the
present work.

The validity of the present analysis is veri®ed by comparing the present results with ®nite element results.
To show the usefulness of the present approach, a suspension beam sizing optimization problem is con-
sidered. Although the present work is carried out for a speci®c optical pickup system, the present technique
can be easily extended to deal with a wider class of actuator design problems.

2. Modeling

The optical actuator system in consideration has four suspension beams with rectangular bends at both
the ends of each of the beam as shown in Fig. 1. The e�ectiveness of the use of the bends has been addressed
earlier by Kim et al. (1999). For a low frequency range which is governed by the fundamental frequencies in
six directions of motion, the assembly of a bobbin, a coil and an objective lens behaves as a rigid body (Kim
et al., 1999). Subsequently, the optical system is modeled as a concentrated mass supported by four sus-
pension beams; (see Fig. 2). The concentrated mass (mass: Mc, moments of inertia: Ix; Iy ; Iz) can be assumed
to be connected to suspension beams by four rigid links.

In investigating the fundamental frequencies in six directions of motion, the sti�ness of the suspension
beams in each direction of motion of interest needs to be evaluated. Once the sti�ness of the assembly of
four suspension beams is known, the fundamental frequencies are easily found from the following simple
equation:

x �
�������������������
stiffness

mass

r
�

�����
ki

mi

s
; �1�

where mass (mi) and sti�ness (ki) should be understood as the inertia and rotational sti�ness when rota-
tional motions are considered. (The use of Eq. (1) can be justi®ed since the magnitude of the concentrated
mass is much larger than that of the suspension beam mass.) Therefore, the present problem can be reduced
to a problem of determining the suspension beam sti�ness.

Fig. 2. Proposed modeling of an optical actuator and suspension beams.
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Though the evaluation of the suspension beam sti�ness in the translation directions of x and y is rather
straightforward, the sti�ness in the other directions of motion is not. Rotational sti�ness, in particular,
requires careful considerations of deformed shapes of beams as well as the distance between the concen-
trated mass and the tips of the suspension beams. In addition, kinematic compatibilities between the
concentrated mass and the suspension beams need to be carefully considered. A detailed analysis is given in
Section 3.

3. Evaluation of suspension beam sti�ness

In determining the suspension beam sti�ness, it should be noted that when an external force (or moment)
is applied at the concentrated mass (point A in Fig. 3), not only the force in the direction of the external
force, but also forces (and moments) in other directions are produced inside the suspension beams.
Therefore, for each of the three forces and three moments applied at the concentrated mass (denoted by F ext

i
and M ext

i , i � x; y; z), we must consider the forces and moments acting on the tip of each of the suspension
beams (denoted by F int

i and M int
i , i � x; y; z). The subscripts i in Fi and Mi denote the direction of the force

(or moment). Using the symmetry of the suspension beams, it will be su�cient to consider the deformation
of one of the four beams. As indicated in Fig. 3, the suspension beams have rectangular cross-sections with
varying thickness (t) and width (b). Although a typical etching process produces uniform beam thickness
(t), the thickness is assumed to vary.

Since each beam segment has larger orders of axial sti�ness in comparison to sti�ness in other directions,
we ignore the contribution of the axial stretch to the beam complementary energy. If three forces
(F ext

x ; F ext
y ; F ext

z ) and three moments (M ext
x ;M ext

y ;M ext
z ) are assumed to be applied at the tip, the stored com-

plementary energy U is

U � UAB � UBC � UCD � UDE � UEF � UFG � UGH: �2�
The expressions for UAB, etc. are listed in Appendix A.

As may be evident in the formula given in Appendix A, the complementary energies associated with two
bending deformations and a twisting deformation are taken into account. In Section 4, we present a
technique to impose correct tip conditions. These conditions represent kinematic compatibilities, equilib-
rium and approximate mode-orthogonality conditions.

Fig. 3. Detailed geometry of a suspension beam. Forces and moments that can be developed at the tip (tip A) of the beam are also

shown.
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Now, we present a procedure to determine the sti�ness of the assembly of the four suspension beams
when external forces (or moments) are applied at the concentrated mass. We begin with the analysis of
translational sti�ness, which is relatively easy except for the translational sti�ness in the x direction. Then,
we present the analysis for the rotational sti�ness.

3.1. Translational sti�ness ktr
x in the x direction

Fig. 4 describes the deformed shape of the suspension system when an external force F ext
x is applied.

Under F ext
x , only the following tip force and moment components are nonvanishing:

F int
x 6� 0; M int

y 6� 0; M int
z 6� 0:

The consideration of the force equilibrium in the x direction determines the magnitude of the force F int
x at

the tip of each beam as

F int
x �

F ext
x

4
: �3�

Now, we consider the kinematic compatibilities. Since the tip of the beam is rigidly attached to the
concentrated mass (i.e. the bobbin assembly), the tip rotation hz about the z axis must vanish. Similarly
the tip displacement dy in the y direction must vanish; the beam is rigidly connected to the mass and the
suspension beam has symmetry about the xz plane. Therefore, a force F int

y and a moment M int
y are developed

at the tip, which can be determined by applying Castigliano's theorem (Washizu, 1982):

hz � oU
oM int

z

� 0; dy � oU
oF int

y

� 0: �4�

Since the beam displacement is equal to the displacement (dx) of the concentrated mass, the following
equation can be used:

oU
oF int

x

� dx: �5�

By solving Eqs. (3)±(5) simultaneously, the sti�ness, ktr
x , of the beam assembly can be found:

ktr
x �h; v; L; b; t; dw; dh; tAB; tBC; . . . ; tGH; bAB; bBC; . . . ; bGH� � F ext

x

dx
: �6�

Fig. 4. Deformed shape under F ext
x .
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In Eq. (6), the superscript tr stands for `translation.' The thickness and width of the segment ij of the
beam are denoted by tij and bij, respectively. Although the explicit expression of ktr

x in Eq. (6) is not
written out here, Eq. (6) indicates that there are considerably many variables that a�ect the beam sti�-
ness. Part of these variables can be used as design variables and an optimization problem will be considered
later.

3.2. Translational sti�ness ktr
y in the y direction

The predicted deformed shape of the optical actuator system subjected to F ext
y is shown in Fig. 5. The

nonvanishing components developed at the tip of each of the beams can be shown as

F int
x 6� 0; F int

y 6� 0; M int
z 6� 0:

Considering the equilibrium between F ext
y and (F int

x ; F int
y ;M int

z ), one can obtain the following results:

F ext
y � 4F int

y ; �7�

M int
z � ÿ

dh

2
F int

x : �8�

Note that Eq. (8) states the moment equilibrium about the z axis.
A special care must be taken in considering the geometric compatibility. Obviously the applied force F ext

y
produces the displacement in the y direction, but it also causes the rotation hz of the suspension system as
well as the tip displacement dt

x of each beam in the x direction (Fig. 5). With a small displacement as-
sumption, the compatibility relation between dt

x and hz can be written as

dh

2
hz � dt

x: �9�

Now applying Castigliano's theorem with respect to F int
x ; F int

y and M int
z yields

oU
oF int

y

� dy ;
oU
oF int

x

� dt
x;

oU
oM int

z

� ht
z: �10�

The solution of Eqs. (7)±(10) gives a closed-form expression for the sti�ness ktr
y :

ktr
y �

F ext
y

dy
: �11�

Fig. 5. Deformed shape under F ext
y .
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3.3. Translational sti�ness ktr
z in the z direction

The suspension deformation in the xz plane due to the force F ext
z is described in Fig. 6. Due to the

nonvanishing tip displacement dt
x, the suspension deformation in the xy plane looks like the one shown in

Fig. 4(a). All the tip forces and moments must be considered in this case, and it is important to use the
following condition:

dv

2
hy � dt

x; �12�

F ext
z � 4F int

z ; �13�

M int
y � ÿ

dh

2
F int

x ; �14�

@U
@F int

z

� dz;
oU
oF int

x

� dt
x;

oU
oM int

y

� hy ;
oU

oM int
x

� 0: �15�

Examining the deformation in the xy plane and using the same approach used for ktr
x , one can ®nd ktr

z
using

oU
oF int

y

� 0;
oU

oM int
z

� 0: �16�

3.4. Rotational sti�ness krot
x about the x axis

A special care must be taken in imposing the kinematic compatibility in this case. Fig. 7 describes the
deformed shape of the actuator model viewed from the positive x axis. The rotation hx caused by the
applied moment M ext

x is accompanied by the tip displacements dt
y and dt

z. For a small rotation hx, the re-
sulting dt

y and dt
z can be approximated as

dt
y � r�cos�a� ÿ cos�a� hx�� ' r sin hx sin a ' rhx sin a; �17a�

dt
z � r�sin�hx � a� ÿ sin a� ' r sin hx cos a ' rhx cos a; �17b�

where

Fig. 6. Deformed shape under F ext
z .
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r � 1

2
�dh � dv�1=2; tan a � dv

dh
: �18�

One can see that the nonvanishing tip force and moment components are F int
x ; F int

y and M int
z when M ext

x is
applied at the concentrated mass. The moment equilibrium about the x axis is used to obtain the relation
between M ext

x and (F int
y ; F int

z ;M int
x ):

M ext
x � 4F int

z

dv

2
� 4F int

y

dh

2
� 4M int

x : �19�

Other kinematic constraints provided by Castigliano's theorem are

oU
oF int

y

� dt
y ;

oU
oF int

z

� dt
z;

oU
oM int

x

� hx;
oU

oM int
z

� 0: �20�

Combining the equations above yields

krot
x �

M ext
x

hx
: �21�

3.5. Rotational sti�ness krot
y about the y axis

The predicted deformation shape of the suspension beam when the moment M ext
y is applied at the

concentrated mass is shown in Fig. 9. It is crucial to use the deformation shape depicted in Fig. 8(a), not in
Fig. 8(b) for the rotational sti�ness evaluation of the suspension beam. This is because we need the rota-
tional sti�ness that will be used for the prediction of the fundamental rotational frequency, not for the static
response prediction. Fig. 8(b) shows the static deformation of the suspension beams under M ext

y , but this
deformation is similar to the deformation shown in Fig. 6. As a result, we propose to impose the following
condition in order to select the deformed shape shown in Fig. 8(a):

dtip
z � 0: �22�

Note that the constraint expressed by Eq. (22) is an approximate mode-orthogonality condition between
the fundamental translational mode in the z axis and the fundamental rotational mode in the y axis. This

Fig. 7. Deformed shape under M ext
x .
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approximate orthogonality is crucial in selecting the correct mode shape. For the deformed shape in
consideration, all the tip force and moment components except M int

x are needed for the analysis.
Considering the moment equilibrium about the y axis, the following relation can be found:

M ext
y � 4F int

x

dh

2
� 4M int

y : �23�

It is also important to note that the moment applied to the bobbin induces not only the corresponding
rotation hy about the y axis, but also the translation dt

x in the x direction of the tips of the suspension beams.
The application of Castigliano's theorem yields, with the consideration of the discussions given above,

oU
oF int

x

� dt
x;

oU
oF int

y

� 0;
oU
oF int

z

� 0;
oU

oM int
y

� hy ;
oU

oM int
z

� 0: �24�

The third expression in Eq. (24) represents the approximate mode-orthogonality condition stated by Eq.
(22). One can show that the translational displacement dt

x is related to the rotation hy as

dt
x �

dhhy

2
: �25�

Finally, solving Eqs. (23)±(25) leads to the expression for the rotational spring constant krot
y � M ext

y =hy .
As pointed out in the introduction, the derivation of krot

y is given here for the ®rst time.

3.6. Rotational sti�ness krot
z about the z axis

As in the case of krot
y , the approximate mode-orthogonality of the rotational mode with respect to the

translational mode in the y direction is

dtip
y � 0: �26�

Considering the equilibrium conditions, one can ®nd that

F int
z � 0; M int

x � 0; M int
y � 0; �27�

M ext
z � 4F int

x

dv

2
� 4M int

z : �28�

Fig. 8. (a) Correct and (b) incorrect deformed shapes under M ext
y (the incorrect deformed shape is not orthogonal to the deformed shape

under F ext
z ).
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Since the moment about the z axis produces the translational displacement dt
x as indicated in the Fig. 9,

the following kinematic relation must be imposed:

dt
x �

dvhz

2
: �29�

Additional geometric constraints can be imposed from the following relations:

oU
oF int

x

� dt
x;

oU
oF int

y

� 0;
oU

oM int
z

� hz: �30�

The solution of Eqs. (27)±(30) yields the ®nal expression for krot
z .

4. Veri®cation of the present analysis

To verify the validity of the present simpli®ed analysis, the present results for the bobbin±suspension
system shown in Figs. 2 and 3 are compared with the ®nite element results. The modeling and analysis is
performed by the commercial ®nite element analysis package, I-I -DEASDEAS (I-I -DEASDEAS, 1993). The suspensions are
modeled by beam elements and the bobbin is modeled by a concentrated mass.

The values listed in Table 1 are used in the numerical calculation. The thickness and width of the four
suspension beams are the same throughout the beams, and are denoted by tr and br, respectively. The
suspension beams are assumed to be made of steel (Young's modulus E � 207 GPa, shear modulus
G � 79:8 GPa).

Table 2 compares the results by the present and ®nite element vibration analyses. Considering the
simpli®cations employed in the present analysis, the present fundamental frequencies are in excellent
agreement with those obtained by the detailed ®nite element analysis. The present analytic solutions may be
very useful in situations when a number of calculations are required. In Section 5, we utilize the present
analysis for suspension design optimization problems as a practical application example.

Fig. 9. Deformed shape under M ext
z .

Table 1

Numerical values used in the present analysis (units: kg, mm)

h v L br tr dw dh Mc Ix Iy Iz

2.0 1.5 10.0 0.02 0.01 10.0 2.0 0.0023 21.1 26.4 40.1
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5. Optimization as an application example

For proper and e�cient operations of an optical actuator system, the eigenfrequencies in two major
directions of motion must be within a target range, and unwanted higher eigenfrequencies should be made
as high as possible. In most practical situations, the rotational vibration mode about the x axis often de-
teriorates the system performance. Subsequently, the corresponding eigenfrequency needs to be pushed as
high as possible. In the present example, the eigenfrequency in the rotational motion about the x axis is
chosen as the unwanted eigenfrequency.

The mathematical statement for the present optimization can be stated as

minimize : f �x� � 1

krot
x

subject to : 246xtr
y 6 26 Hz; 246xtr

z 6 26 Hz;

where the design variables x are fh; v; L; bAB; bBC; . . . ; bGH; tr; dw; dhgT
.

The constraints impose upper and lower bounds for the fundamental frequencies in the focusing and
tracking motions. The design variable bij �ij � AB;BC; . . . ;GH� denote the width of beam segments (Fig.
3). The thickness of the beam is assumed to be uniform.

The optimization has been conducted using a MATLABMATLAB toolbox (Grace, 1996). The optimized design
variables and natural frequencies are tabulated in Tables 3, 4, respectively. Table 4 shows some im-
provements made by the present optimization. Although more practical optimization problems can be
handled by the present analysis, this optimization problem is used only to demonstrate the usefulness of the
present approach.

Table 3

The numerical values of design variables before and after optimization (unit: mm)

Variables Before After

bAB 0.15 0.135

bBC 0.15 0.135

bCD 0.15 0.165

bDE 0.15 0.165

bEF 0.15 0.165

bFG 0.15 0.135

bGH 0.15 0.135

h 2 2.2

v 1.5 1.65

L 10 9.39

tr 0.15 0.165

dw 10 11

dh 4 4.4

Table 2

Veri®cation of the ®rst six natural frequencies (unit: Hz)

Finite element Present simpli®ed analysis

x translation 175.4 176.2

y translation 14.99 15.08

z translation 17.91 18.46

x rotation 52.48 54.56

y rotation 61.46 59.87

z rotation 302.2 303.0
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6. Conclusions

Analytic solutions for all six fundamental frequencies of a typical optical actuator are derived for the
®rst time. In particular, the correct deformation shapes and kinematic conditions necessary to determine
the rotational modes are o�ered in this work. Though higher tilting modes and Q-values at some important
higher frequencies are not given, the present analysis will play important roles in understanding the me-
chanics of low-frequency vibration characteristics of pickups and in selecting cost-e�ective system con-
trollers.

Appendix A. Explicit expressions for strain energy

The strain energy stored in each beam segment can be written as (Fig. 3)

UAB �
Z v

0

�F int
x y ÿM int

z �2
2EIAB

xx

dy �
Z v

0

�M int
y �2

2GJ AB
dy �

Z v

0

�F int
z y �M int

x �2
2EIAB

zz

dy; �A:1�

UBC �
Z h

0

�M int
x x� F int

z v�2
2GJ BC

dx�
Z h

0

�M int
y ÿ F int

z x�2
2EIBC

yy

dx�
Z h

0

�F int
y xÿ F int

x v�M int
z �2

2EIBC
zz

dx; �A:2�

UCD �
Z v

0

�F int
z �vÿ y� �M int

x �2
2EICD

xx

dy �
Z v

0

�F int
z hÿM int

y �2
2GJ CD

dy �
Z v

0

�F int
x �vÿ y� ÿ F int

y hÿM int
z �2

2EICD
zz

dy;

�A:3�

UDE �
Z L

0

�M int
y ÿ F int

z �h� x��2
2EIDE

yy

dx�
Z L

0

�M int
x �2

2GJ DE
dx�

Z L

0

�F int
y �h� x� �M int

z �2
2EIDE

zz

dx; �A:4�

UEF �
Z v

0

�F int
z y ÿM int

x �2
2EIEF

xx

dy �
Z v

0

�F int
z �h� L� ÿM int

y �2
2GJ EF

dx�
Z v

0

�F int
y �h� L� � F int

x y �M int
z �2

2EIEF
zz

dy;

�A:5�

UFG �
Z h

0

�F int
z vÿM int

x �2
2GJ FG

dx�
Z h

0

�M int
y ÿ F int

z �L� h� x��2
2EIFG

yy

dx; �A:6�

UGH �
Z v

0

�F int
y �L� 2h� � F int

x �vÿ y� �M int
z �2

2EIGH
zz

dy �
Z v

0

�M int
x ÿ F int

z �vÿ y��2
2EIGH

xx

dy

�
Z v

0

�M int
y ÿ F int

z �L� 2h��2
2GJ GH

dx: �A:7�

Table 4

Values of the natural frequencies before and after optimization (unit: Hz)

Before After Variation (%)

x translation 286.3 258.2 9.84

y translation 24.5 23.4 4.52

z translation 24.5 26.0 6.23

x rotation 63.6 75.0 17.9

y rotation 181.1 181.6 0.25

z rotation 414.7 419.9 1.26
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In Eqs. (A.1)±(A.7), E and G are Young's and shear moduli, respectively. The moments of inertia of the
beam segment ij about the k axis and the polar moment of inertia about the centroid of the beam section are
denoted by I ij

kk and J ij, respectively.
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